
  

 

Abstract—Cardiac output (CO) change is the primary 
compensatory mechanism that responds to oxygenation 
demand. Its continuous monitoring has great potential for the 
diagnosis and management of cardiovascular diseases, both in 
hospital as well as in ambulatory settings. However, CO 
measurements are currently limited to hospital settings only. In 
this paper, we present an extension of the model proposed by 
Finkelstein for beat-to-beat CO assessment. We use a non-
linear model consisting of a two-layer feed-forward artificial 
neural network. In addition to demographic (body surface area 
and age) and physiological parameters (HR), surrogates of 
contractility, afterload and mean arterial pressure based on 
systolic time intervals (STIs), estimated from echocardiography 
and heart sounds are used as inputs to our models. The results 
showed that the proposed models - with echocardiography as 
reference - produce better estimations of stroke volume/CO 
than the Finkelstein model (12.83±10.66 ml vs 7.23±6.6 ml), as 
well as higher correlation (0.46 vs 0.82). 

I. INTRODUCTION 
ARDIAC Output (CO) is one of the main variables 
controlled by the autonomous nervous system to react to 

the physiological need of organ perfusion and oxygen 
delivery [1]. Continuous monitoring of CO has many 
applications, both in acute and long-term chronic care. In 
acute care, it is observed that derangements in circulation are 
common in major classes of illness such as sepsis, trauma 
and surgery [2, 3]. Detailed evaluation of the circulation is, 
therefore, an essential aspect to adequately perform 
informed decisions for routine patient management in acute 
settings, having significant impact on the outcome [3]. For 
chronic patient management, continuous CO assessment (i.e. 
repeated daily measurements) might enable the detection of 
changes in hemodynamic trends with envisioned impact on 
timely detection of disease progression and medication 
tailoring. 

Throughout the years, there have been several 
technological advances in CO measurement. In clinical 
practice, one of the reference methods for CO measurement 
has been the pulmonary artery catheter thermodilution 
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method, which is now declining in favor of less invasive and 
continuous techniques such as lithium and cold saline 
indicators [2]. Low invasive and non-invasive ultrasound 
techniques (e.g. oesophageal Doppler) are becoming 
standard procedures to determine CO [4], but the 
requirement of expensive devices and skilled operators limit 
their applicability to hospital environments. 

The unmet need of continuous CO monitoring techniques 
becomes even more evident for in prolonged in-hospital 
patient monitoring and chronic disease management at 
home, where non-invasive and low intrusive measurement 
principles are required. Several technologies have emerged 
for these application scenarios, being the most explored 
measurement principles, bio-impedance-based techniques 
(e.g. the Impedance Cardiography - ICG), Pulse Counter 
Analysis (PCA), Pulse Wave Analysis (PWA) and systolic 
time intervals (STIs). However, limitations are still 
recognized in these techniques. For example, the reliability 
of the CO measurements provided by bio-impedance-based 
techniques was questioned in several studies [2, 5, 6]. In 
arterial PCA [2], the main drawbacks are related to the 
dependence between aortic impedance, cardiac output and 
aortic compliance. Furthermore, techniques based on PWA 
using model flow methods (e.g. Finapres®) present 
inaccurate estimates of CO without invasive calibration [7]. 

STI-based methods for CO assessment are very appealing, 
since there are several measurement modalities for STI 
estimation that are applicable in home settings [6]. The left 
ventricle ejection time (LVET) has long been applied 
clinically as a surrogate for CO. Not surprisingly, 
Finkelstein et al. [8] introduced a method based on LVET to 
measure CO.  

In this paper, we evaluate Finkelstein’s method using 
echocardiography reference measurements both in healthy 
and cardiovascular diseased (CVD) populations (heart 
failure and coronary artery disease) and propose a non-linear 
extension of the STI method to measure CO. To achieve our 
goal, a data collection study has been conducted for the 
extraction of pre-ejection period (PEP), LVET and stroke 
volume (SV) from the synchronized acquisition of 
phonocardiogram (PCG), electrocardiogram (ECG) and 
echocardiogram (ECHO). 

In section II, the proposed methodologies for the 
assessment of SV using STIs extracted from heart sound are 
outlined. In section III the clinical study protocol and the 
validation methods are presented. The main results are 
presented and discussed in section IV. Finally, in section V 
the main conclusions of this work are presented and some 
directions for future work are pointed out. 
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II. METHODS 
Cardiac Output (CO) is, by definition, the volume of 

blood ejected by the heart in a certain period of time 
(generally L/min). It is determined by the product of the 
ventricular Stroke Volume (SV) and Heart Rate (HR), i.e. 
= ܱܥ  ܸܵ ×  Ventricular SV is the difference between .ܴܪ
the ventricular end-diastolic volume (EDV) and the 
ventricular end-systolic volume (ESV), i.e. ܸܵ = ܸܦܧ  −
 There are several variables that directly and indirectly .ܸܵܧ
influence these volumes and, consequently, SV. Changes in 
ventricular inotropy (contractility) alter the rate of 
ventricular pressure development, thereby affecting ESV and 
SV [9]. For example, the decrease in inotropy (e.g. heart 
failure) results in the reduction of SV and in the increase of 
ESV. Furthermore, chronotropy (HR) is interrelated with SV 
with an inverse proportion [10]. An example of this 
mechanism is observed in excitement, which leads to the 
release of the hormone epinephrine, causing a constriction in 
the blood vessels and in turn the increase of the HR and the 
decrease of the SV.  

The correlation between SV and STIs has long been 
known. Stroke Volume is determined by the preload (i.e. 
end-diastolic pressure) and afterload (i.e. end-systolic 
pressure), which is in turn significantly associated with the 
Systemic Vascular Resistance (SVR), i.e. the resistance to 
the blood flow in the arterial system. According to 
Boudoulas [11], changes in afterload with resulting changes 
in isovolumetric pressure directly alter the Pre-ejection 
Period (PEP). Additionally, the respiratory change in PEP 
was also associated to changes in preload in critically ill 
patients [12]. As stated by Proença et al. [13], PEP is also 
greatly correlated with mean arterial pressure (MAP), which 
in turn is affected by SV, as well as HR, SVR and central 
venous pressure (CVP), as shown in eq. (1). Furthermore, 
LVET is correlated to the obstruction to left ventricular 
outflow [9], and therefore directly affects SV. 

ܲܣܯ = ܸܵ × ܴܪ × ܸܴܵ +  (1) ܸܲܥ
Age is another variable that highly influences cardiac output. 
Alfie et al. [14] observed that as patients get older, cardiac 
output gradually decreases at the expense of SV.   

Based on these physiological findings, Finkelstein et al. 
[8] proposed a linear regression model that is a combination 
of both demographic and hemodynamic variables, as in (2).  
ܵ ிܸூே = −6.6 + 0.25 × ܶܧܸܮ + 40.4 × ܣܵܤ − 0.51

× ܧܩܣ − 0.62 ×  (2) ܴܪ

  In this paper, we propose two non-linear models that are 
an extension to the model proposed by Finkelstein et al. [8]. 
Since SV is determined not only by variables such as LVET, 
HR, body surface area (BSA) and age, but also by other 
factors such as contractility, preload and afterload, we 
propose the inclusion of surrogates for these parameters in 
the following presented models.  

The STIs were estimated using an algorithm proposed by 
Paiva et al. [15], which is based on the analysis of heart 
sounds. After the estimation of PEP and LVET, a 

contractility index (CI) was extracted, which is defined by 
the ratio of PEP and LVET, i.e. ܫܥ =  see) ܶܧܸܮ/ܲܧܲ 
[16]). PEP is directly applied as a surrogate of afterload and 
MAP. 

In the first model, the same features used by Finkelstein et 
al. [8] were used as input in a non-linear model, which is 
described in eq. (3). 

ܵ ேܸெଵ =  (3) (ܴܪ,ܧܩܣ,ܣܵܤ,ܶܧܸܮ)݂
In the second model, a different strategy was adopted. 

Each of the parameters used by Finkelstein et al. [8] were 
used as independent inputs in the proposed model. 
Additionally, surrogates of contractility and afterload were 
also considered in this model. The second non-linear model 
is presented in eq. (4). 

ܵ ேܸெଶ =  (4) (ܲܧܲ,ܫܥ,ܴܪ,ܧܩܣ,ܣܵܤ,ܶܧܸܮ)݂
Since the accuracy of the proposed models highly depend 

on the feature space domain covered during the model 
identification (i.e. model training in case of a neural 
network), we suggest the use of a combination of both linear 
and non-linear models in real time scenarios. In this 
approach, the convex hull [17] of the known feature space is 
previously calculated using the training data set. During 
beat-by-beat measurement, the location of the feature vector 
is calculated and the model is chosen according to its 
relative position regarding to the convex hull of the feature 
space [18], i.e. if the feature vector is located inside the 
convex hull, the proposed non-linear model is used; 
otherwise, the choice relies on the linear model proposed by 
Finkelstein et al. [8]. Using this approach, we aim the 
minimization of the possible SV estimation errors resulting 
from extrapolating with the model for feature vectors located 
outside the known feature space (i.e. the feature space used 
in the construction of the model). 

III. EXPERIMENTAL PROTOCOL 

A. Data Collection 
A data collection study was conducted at “Centro 

Hospitalar de Coimbra” (CHC) and involved 42 volunteers. 
This study was authorized by the ethical committee of CHC. 
The population consisted of 32 male and 10 female 
volunteers from which 31 subjects present no condition 
(healthy subjects) and 11 subjects present various 
cardiovascular diseases (CVD subjects). The data acquisition 
protocol of the data acquisition was conducted by an 
authorized medical specialist and consisted of a synchronous 
acquisition of both Echocardiography (Doppler mode) and 
PCG (Left sternum border and apex positions) in a relaxed, 
quiet and warm (ap. 22º C) environment. All volunteers 
were placed in supine position during the acquisitions. 

The biometric characteristics of the studied population are 
described as follows (mean ± standard deviation): 

Healthy subjects: 
 Age: 29.72 ± 8.54 years 
 BMI: 24.48 ± 2.41 Kg/m2 



  

CVD subjects: 
 Age: 56 ± 17.86 years  
 BMI: 24.60 ± 3.73 Kg/m2 

The echocardiographic data was annotated by a clinical 
expert [19] who extracted the parameters PEP, LVET and 
SV necessary for the evaluation of the proposed 
methodologies. The algorithm to estimate PEP and LVET 
using heart sounds is described in detail in [18]. 

The database is composed by 968 annotated beats, of 
which 789 correspond to healthy subjects and 179 to CVD 
subjects.    

B. Model identification and validation 
An Artificial Neural Network (ANN) has been adopted 

for the evaluation of the proposed models. The ANN 
consists of a two-layer feed-forward network, with 10 
sigmoid hidden neurons and two linear neurons in the output 
layer. In the training step, the Levenberg-Marquardt 
backpropagation algorithm was used. 

The proposed models were validated using a repeated 
random sub-sampling validation scheme. In this validation 
scheme, the dataset was randomly split into 10 subsets of 
training and validation data, with relative proportion of 60% 
and 40%, respectively. The proportion between training and 
validation data was kept for healthy and CVD subjects (i.e. 
the training data is composed by 60% of the healthy subjects 
beats and 60% of the CVD subjects beats, while the 
validation data is composed by 40% of the healthy subjects 
beats and 40% of the CVD subjects beats). This process of 
validation was repeated 20 times. 

IV. RESULTS AND DISCUSSION 
 The results achieved by the proposed methods are 

summarized in TABLE 1 and TABLE 2, focusing on the 
analysis of the SV estimation performance for each model: 
1) the Finkelstein model (LMFINK); 2) the 1st non-linear 
model (NLM1) described in equation (3); and 3) the 2nd non-

linear model (NLM2) described in equation (4). For 
comparison purposes, the results of the intermediate models 
between NLM1 and NLM2 (i.e. NLM1 considering PEP and 
NLM1 considering CI) and the results of the models 
considering the reference features assessed from 
echocardiography (TABLE 1) are also presented. All models 
were tested with the global test dataset (Global) composed 
by 40% of the beats of the healthy and CVD subjects, and 
using the two aforementioned test subsets corresponding to 
healthy volunteers (Healthy) and volunteers with 
cardiovascular diseases (CVD). For performance 
comparison, three approaches were followed: (i) the first one 
was the absolute error measurement statistics with respect to 
the gold standard provided by echocardiography. (ii) The 
second utilized the method proposed by Bland and Altman 
(1986). (iii) Finally, the third method was least-squares 
linear regression analysis and the computation of correlation 
coefficient (r). Error distributions were tested for gaussianity 
using the Kolmogorov–Smirnov test. Accordingly, statistical 
analysis was performed using the paired Student test and the 
two-sided Wilcoxon signed rank test. Correlations were 
calculated using Pearson and Spearman’s correlations, 
respectively.    

The estimation errors were calculated by subtracting the 
measured parameter (ݔ) to the reference parameter in ECHO 
(xେୌ), i.e. ݔ −  ாுை. In the presented tables, theݔ
abbreviation “Error” stands for the error between measured 
and reference values (ݔ −  ”ாுை), while “Abs. Errorݔ
concerns to the absolute estimation error (|ݔ −  ாுை|). Theݔ
abbreviation “Abs. Error (%)” stands for the percentage of 
absolute estimation error, i.e. |ݔ −  ாுைതതതതതതതത. Theݔ/|ாுைݔ
results shown correspond to the ANNs that presented the 
absolute estimation errors closer to the average over the 
splitting of the datasets, hence minimizing overfitting. 
Furthermore, the presented results were extracted based on 
the evaluation of the testing subsets.  

a)    b)    c)  

a)    b)    c)  
Fig.  1. Blant-Altman (top) and regression plots (bottom) for SV extracted from echocardiography (SVREF) and SV estimated by model NLM2 (SVmeas.) 
using a) global; b) healthy; and c) CVD datasets. 
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TABLE 1 presents the results achieved for SV 
measurement using the linear and non-linear models based 
on the STI and CI measurements extracted from the 
echocardiography. As can be observed, for all three 
assessment contexts (i.e. global, healthy and CVD data sets), 
the proposed non-linear models present better results than 
the model proposed by Finkelstein et al. [8], being 
NLM1+CI the model that achieves lower abs. estimation 
error (global dataset: 6.63±5.41 ml). From the demographic 
context point of view, one observes that the LMFINK model 
presents worst estimations of SV for CVD volunteers than 
for healthy volunteers (17.55±11.36 ml vs 10.78±8.57 ml, 
respectively). Contrarily, the non-linear models present 
better abs. estimation error for CVD volunteers than for 
healthy volunteers (e.g. NLM2: 6.07±5.39 ml vs 6.86±5.94 
ml, respectively), with exception to NLM1 and NLM1+PEP. 
A reduced percentage of absolute estimation error is 
observed for the presented models, being the LMFINK the 
model that presents worst results (global dataset: 16%), 
almost twofold the percentage of estimation error for the 
non-linear models (global dataset: 9%). This discrepancy 
becomes more accentuated when analyzing the CVD dataset, 
where a threefold increase is observed from non-linear 
models (CVD dataset: 7-11%) to model LMFINK (CVD 
dataset: 22%). The range of SV values assessed from 
echocardiography was 28.84-118.83 ml. 

From TABLE 1, it is also observed that the correlation 
coefficients increase from model LMFINK to non-linear 
models in each of the three contexts under analysis. 
Regarding the comparative analysis between contexts, we 
verified that correlation values (r) increase from healthy to 
CVD volunteers in all models. Furthermore, the close 
relationship between the reference and measured SV (model 

NLM2) can be verified by the Blant-Altman and regression 
plots, presented in Fig.  1: a) global dataset; b) healthy 
dataset; and c) CVD dataset. 

Comparing the proposed non-linear models, it is possible 
to observe that the inclusion surrogates of contractility and 
afterload, i.e. CI and PEP, resulted in improved abs. 
estimation errors, being NLM1+CI the model that achieved 
the best results (global dataset: 6.63±5.41 ml), against the 
NLM1 model (global dataset: 6.95±6.46 ml). Similarly, the 
inclusion of PEP and CI also resulted in enhancements on 
the correlation coefficients, where an increase was observed 
from NLM1 (global dataset: 0.80) to NLM2 (global dataset: 
0.85). 

Contrarily to the aforementioned observations, in TABLE 
2 it is observed that the inclusion of the features PEP and CI 
extracted from heart sounds did not produce significant 
enhancements in the assessment of SV, both in abs. 
estimation error and correlation coefficients. Exceptions 
were seen in the models NLM1+CI (CVD dataset: 
05.90±05.84 ml) and NLM1+PEP (healthy dataset: 0.77). 
The obtained results suggest that our non-linear models 
achieve better performance than the model proposed by 
Finkelstein et al. [8]. In addition, SV measurement benefits 
from the inclusion of surrogates of afterload and contractility 
as long as these surrogates are measured with low 
uncertainty (as in echocardiography). The measurement of 
PEP (healthy - abs. error: 7.1±5.6 ms / r: 0.53; CVD - abs. 
error: 11.9±8.8 ms / r: 0.70) and LVET (healthy - abs. error: 
11.2±9.3 ms / r: 0.87; CVD - abs. error: 18.0±17.4 ms / r: 
0.83) derived from heart sound exhibits higher uncertainty 
[6] and eliminates the gained advantage to serve as surrogate 
of contractility. Under these circumstances, it is observed 

TABLE 2 
STROKE VOLUME ESTIMATION RESULTS BASED ON MEASURED 

PARAMETERS FROM HEART SOUNDS  
(REPEATED RANDOM SUB-SAMPLING VALIDATION) 

Dataset 
Model 

Error 
(ml) 

Avg ± std 

Abs. Error 
(ml) 

Avg ± std 

Abs. Error 
(%) 

Avg ± std 
r 

LMFINK 
Global 
Healthy 

CVD 

-01.21±16.65 
 02.45±13.52 
-17.27±19.48 

12.83±10.66 
10.92±08.31 
21.22±15.01 

17±14 
15±11 
27±19 

0.46* 
0.50* 
0.60* 

NLM1 
Global 
Healthy 

CVD 

-00.06±09.80 
00.51±10.14 
-02.58±07.71 

07.23±06.61 
07.43±06.91 
06.34±05.05 

10±09 
10±09 
08±06 

0.79* 
0.74* 
0.94 

NLM1+PEP 
Global 
Healthy 

CVD 

 00.92±10.69 
 01.32±10.57 
-00.84±11.09 

07.42±07.75 
07.48±07.58 
07.14±08.49 

10±10 
10±10 
09±11 

0.82* 
0.77* 
0.86 

NLM1+CI 
Global 
Healthy 

CVD 

 
-00.25±09.98 
 00.08±10.33 
-01.71±08.15 

07.52±06.55 
07.88±06.66 
05.90±05.84 

10±09 
11±09 
08±08 

0.77* 
0.66* 
0.79* 

NLM2 
Global 
Healthy 

CVD 

-00.55±10.05 
 00.22±10.32 
-03.94±08.03 

07.59±06.61 
07.77±06.78 
06.80±05.78 

10±09 
10±09 
09±07 

0.77* 
0.70* 
0.94 

* Estimated values using Spearman’s  correlation. 

TABLE 1 
STROKE VOLUME ESTIMATION RESULTS BASED ON REFERENCE 

PARAMETERS FROM ECHOCARDIOGRAPHY  
(REPEATED RANDOM SUB-SAMPLING VALIDATION) 

Dataset 
Model 

Error 
(ml) 

Avg ± std 

Abs. Error 
(ml) 

Avg ± std 

Abs. Error 
(%) 

Avg ± std 
r 

LMFINK 
Global 
Healthy 

CVD 

 00.99±15.32 
04.89±12.88 
-16.13±13.32 

12.04±09.50 
10.78±08.57 
17.55±11.36 

16±13 
15±12 
22±14 

0.41* 
0.51* 
0.70* 

NLM1 
Global 
Healthy 

CVD 

-00.42±09.49 
 00.81±09.14 
-05.81±09.15 

06.95±06.46 
06.87±06.07 
07.30±07.99 

09±09 
09±08 
09±10 

0.80* 
0.77* 
0.79* 

NLM1+PEP 
Global 
Healthy 

CVD 

-00.42±08.85 
 00.18±07.81 
-03.02±12.15 

06.66±05.83 
06.28±04.64 
08.37±09.27 

09±08 
08±06 
11±12 

0.84* 
0.81* 
0.88* 

NLM1+CI 
Global 
Healthy 

CVD 

 
0.11±08.56 
0.88±08.71 
-3.27±07.00 

06.63±05.41 
06.91±05.36 
05.40±05.50 

09±07 
09±07 
07±07 

0.81* 
0.73* 
0.94* 

NLM2 
Global 
Healthy 

CVD 

-00.79±08.87 
-01.04±09.03 
 00.30±08.14 

06.72±05.84 
06.86±05.94 
06.07±05.39 

09±08 
09±08 
08±07 

0.85* 
0.80* 
0.94 

* Estimated values using Spearman’s  correlation.  



  

that the inclusion of the afterload surrogate improves the SV 
estimate. However, the inclusion of CI degrades the 
measurement. The surrogate of contractility (CI) is subject to 
greater estimation errors resulting from the uncertainty in the 
estimation of PEP and LVET, which can be observed in 
model NLM1+CI (TABLE 2).  
 In line of the primary objective of this study, we found 
that the non-linear models were able to achieve better SV 
estimates for CVD subjects. Furthermore, the high 
correlation coefficients between SVNLM2 and SVECHO show 
that the non-linear models are able to follow closely SV 
trends. However, more data have to be acquired to validate 
these results, since the CVD dataset was substantially 
smaller than the healthy subjects’ dataset (app. 1/4).  

V. CONCLUSIONS AND FUTURE WORK 
In the current paper, we proposed and analyzed non-linear 

extensions to the Finkelstein linear model, for the 
assessment of Stroke Volume. These models explore known 
correlations between cardiac output and several 
demographic and physiological variables that can be 
assessed using non-invasive techniques. In the proposed 
extensions, systolic time intervals as surrogates for afterload 
and inotropy have been integrated and have shown to 
significantly improve Stroke Volume measurement quality. 
The proposed models were tested in 42 subjects (31 healthy 
subjects and 11 subjects with cardiovascular diseases). The 
percentage of estimation error of the proposed models (app. 
10%) and correlation (0.82) in comparison to the Finkelstein 
model (17%; correlation = 0.46) is substantially below the 
clinically accepted error of 30% [20]. This reveals that our 
approach is promising for CO monitoring of both healthy 
and cardiovascular diseased subjects. 

Future work will focus on the extension of the proposed 
models to include other surrogates that determine SV. For 
example, peripheral resistance is known to affect afterload, 
ΔPEP has been associated with preload changes, while 
respiration contributes to high frequency changes in left 
ventricular function, and therefore SV. Furthermore, we 
intend to evaluate the weight of each variable in the 
proposed models output, using a feature selection technique 
(e.g. NMIFS). Using this kind of techniques, one is able to 
identify redundancy between features and consequently 
ignore features that do not contribute to the desired output. 
Furthermore, the weight of each feature can be changed 
depending on the demographical and physiological context 
under study. Other modeling approaches will also be 
considered as well. We will investigate the use of smooth 
functions to reduce discontinuities between regions inside 
and outside the convex hull. Another direction of further 
research might be the extraction of human interpretable 
information by using techniques such as fuzzy neural 
networks. 
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